Как вывести число из логарифма. Формулы логарифмов

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

По основанию числа е : ln x = log e x .

Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x)′ = 1/ x .

Исходя из определения , основанием натурального логарифма является число е :
е ≅ 2,718281828459045... ;
.

График функции y = ln x .

График натурального логарифма (функции y = ln x ) получается из графика экспоненты зеркальным отражением относительно прямой y = x .

Натуральный логарифм определен при положительных значениях переменной x . Он монотонно возрастает на своей области определения.

При x → 0 пределом натурального логарифма является минус бесконечность ( - ∞ ).

При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a растет быстрее логарифма.

Свойства натурального логарифма

Область определения, множество значений, экстремумы, возрастание, убывание

Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.

Значения ln x

ln 1 = 0

Основные формулы натуральных логарифмов

Формулы, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:

Доказательства этих формул представлены в разделе "Логарифм" .

Обратная функция

Обратной для натурального логарифма является экспонента .

Если , то

Если , то .

Производная ln x

Производная натурального логарифма:
.
Производная натурального логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Интеграл вычисляется интегрированием по частям :
.
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексной переменной z :
.
Выразим комплексную переменную z через модуль r и аргумент φ :
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Логарифмом положительного числа b по основанию а (a > 0, a ≠ 1) называется такой показатель степени c , в которую нужно возвести число а , чтобы получить число b .

Записывают: с = log a b , что означает a c = b .

Из определения логарифма следует справедливость равенства:

a log a b = b , (а > 0, b > 0, a ≠ 1),

называемого основным логарифмическим тождеством.

В записи log a b число а - основание логарифма , b - логарифмируемое число .

Из определения логарифмов вытекают следующие важные равенства:

log a 1 = 0,

log a а = 1.

Первое следует из того, что a 0 = 1, а второе - из того, что a 1 = а . Вообще имеет место равенство

log a a r = r .

Свойства логарифмов

Для положительных действительных чисел a (a ≠ 1), b , c справедливы следующие соотношения:

log a ( b · c ) = log a b + log a c

log a (b ⁄ c ) = log a b - log a c

log a b p = p · log a b

log a q b = 1 / q · log a b

log a q b p = p / q · log a b

log a pr b ps = log a r b s

log a b = log c b log c a ( c 1)

log a b = 1 ⁄ log b a ( b ≠ 1)

log a b · log b c = log a c

c log a b = b log a c

Замечание 1. Если а > 0, a ≠ 1, числа b и c отличны от 0 и имеют одинаковые знаки, то

log a (b · c ) = log a |b | + log a |c |

log a (b ⁄ c ) = log a |b | - log a |c | .

Замечание 2. Если p и q - чётные числа, а > 0, a ≠ 1 и b ≠ 0, то

log a b p = p · log a |b |

log a pr b ps = log a r |b s |

log a q b p = p / q · log a |b | .

Для любых положительных, отличных от 1 чисел a и b верно:

log a b > 0 тогда и только тогда, когда a > 1 и b > 1 или 0 < a < 1 и 0 < b < 1;

log a b < 0 тогда и только тогда, когда a > 0 и 0 < b < 1 или 0 < a < 1 и b > 1.

Десятичный логарифм

Десятичным логарифмом называется логарифм, основание которого равно 10.

Обозначаются символом lg :

log 10 b = lg b .

Десятичные логарифмы до изобретения в 70-х годах прошлого века компактных электронных калькуляторов широко применялись для вычислений. Как и любые другие логарифмы, они позволяли многократно упростить и облегчить трудоёмкие расчёты, заменяя умножение на сложение, а деление на вычитание; аналогично упрощались возведение в степень и извлечение корня.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс для чисел от 1 до 1000, с восемью (позже - с четырнадцатью) знаками. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми .

В зарубежной литературе, а также на клавиатуре калькуляторов встречаются и другие обозначения десятичного логарифма: log , Log , Log 10 , причём следует иметь в виду, что первые два варианта могут относиться и к натуральному логарифму.

Таблица десятичных логарифмов целых чисел от 0 до 99

Десятки Единицы
0 1 2 3 4 5 6 7 8 9
0 - 0 0,30103 0,47712 0,60206 0,69897 0,77815 0,84510 0,90309 0,95424
1 1 1,04139 1,07918 1,11394 1,14613 1,17609 1,20412 1,23045 1,25527 1,27875
2 1,30103 1,32222 1,34242 1,36173 1,38021 1,39794 1,41497 1,43136 1,44716 1,46240
3 1,47712 1,49136 1,50515 1,51851 1,53148 1,54407 1,55630 1,56820 1,57978 1,59106
4 1,60206 1,61278 1,62325 1,63347 1,64345 1,65321 1,66276 1,67210 1,68124 1,69020
5 1,69897 1,70757 1,71600 1,72428 1,73239 1,74036 1,74819 1,75587 1,76343 1,77085
6 1,77815 1,78533 1,79239 1,79934 1,80618 1,81291 1,81954 1,82607 1,83251 1,83885
7 1,84510 1,85126 1,85733 1,86332 1,86923 1,87506 1,88081 1,88649 1,89209 1,89763
8 1,90309 1,90849 1,91381 1,91908 1,92428 1,92942 1,93450 1,93952 1,94448 1,94939
9 1,95424 1,95904 1,96379 1,96848 1,97313 1,97772 1,98227 1,98677 1,99123 1,99564

Натуральный логарифм

Натуральным логарифмом называется логарифм, основание которого равно числу е , математической константе, являющейся иррациональным числом, к которому стремится последовательность

а n = (1 + 1/n ) n при n → + .

Иногда число e называют числом Эйлера или числом Непера . Значение числа е с первыми пятнадцатью цифрами после запятой следующее:

е = 2,718281828459045... .

Натуральный логарифм обозначаются символом ln :

log e b = ln b.

Натуральные логарифмы являются самыми удобными при проведении различного рода операций, связанных с анализом функций.

Таблица натуральных логарифмов целых чисел от 0 до 99

Десятки Единицы
0 1 2 3 4 5 6 7 8 9
0 - 0 0,69315 1,09861 1,38629 1,60944 1,79176 1,94591 2,07944 2,19722
1 2,30259 2,39790 2,48491 2,56495 2,63906 2,70805 2,77259 2,83321 2,89037 2,94444
2 2,99573 3,04452 3,09104 3,13549 3,17805 3,21888 3,25810 3,29584 3,33220 3,36730
3 3,40120 3,43399 3,46574 3,49651 3,52636 3,55535 3,58352 3,61092 3,63759 3,66356
4 3,68888 3,71357 3,73767 3,76120 3,78419 3,80666 3,82864 3,85015 3,87120 3,89182
5 3,91202 3,93183 3,95124 3,97029 3,98898 4,00733 4,02535 4,04305 4,06044 4,07754
6 4,09434 4,11087 4,12713 4,14313 4,15888 4,17439 4,18965 4,20469 4,21951 4,23411
7 4,24850 4,26268 4,27667 4,29046 4,30407 4,31749 4,33073 4,34381 4,35671 4,36945
8 4,38203 4,39445 4,40672 4,41884 4,43082 4,44265 4,45435 4,46591 4,47734 4,48864
9 4,49981 4,51086 4,52179 4,5326 4,54329 4,55388 4,56435 4,57471 4,58497 4,59512

Формулы перехода от десятичного к натуральному логарифму и наоборот

Так как lg е = 1 / ln 10 ≈ 0,4343, то lg b ≈ 0,4343 · ln b ;

так как ln 10 = 1 / lg e ≈ 2,3026, то ln b ≈ 2,3026 · lg b .

Логарифмом положительного числа N по основанию ( b > 0, b 1 ) называется показатель степени x , в которую нужно возвести b , чтобы получить N .

Обозначение логарифма:

Эта запись равнозначна следующей: b x = N .

П р и м е р ы: log 3 81 = 4 , так как 3 4 = 81 ;

Log 1/3 27 = 3 , так как (1/3) - 3 = 3 3 = 27 .

Вышеприведенное определение логарифма можно записать в виде тождества:

Основные свойства логарифмов.

1) log b = 1 , так как b 1 = b .

b

2) log 1 = 0 , так как b 0 = 1 .

b

3) Логарифм произведения равен сумме логарифмов сомножителей:

log ( ab ) = log a + log b .

4) Логарифм частного равен разности логарифмов делимого и делителя:

log ( a / b ) = log a – log b .

5) Логарифм степени равен произведению показателя степени на логарифм её основания:

log ( b k ) = k · log b .

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак лога рифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода (т. e . перехода от одного основания логарифма к другому основанию):

В частном случае при N = a имеем:

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, ... p авны соответственно 1, 2, 3, …, т.е. имеют столько положительных

единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, ... p авны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей ( считая и нуль целых ). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой . Целая часть логарифма называется характеристикой . Для практического при менения десятичные логарифмы наиболее удобны.

Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n ) n при неограниченном возрастании n (см. первый замечательный предел ).
Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций.
Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

Логарифмом числа N по основаниюа называется показатель степених , в которую нужно возвестиа , чтобы получить числоN

При условии, что
,
,

Из определения логарифма следует, что
, т.е.
- это равенство является основным логарифмическим тождеством.

Логарифмы по основанию 10 называются десятичными логарифмами. Вместо
пишут
.

Логарифмы по основанию e называются натуральными и обозначаются
.

Основные свойства логарифмов.

    Логарифм единицы при любом основании равен нулю

    Логарифм произведения равен сумме логарифмов сомножителей.

3) Логарифм частного равен разности логарифмов


Множитель
называется модулем перехода от логарифмов при основанииa к логарифмам при основанииb .

С помощью свойств 2-5 часто удается свести логарифм сложного выражения к результату простых арифметических действий над логарифмами.

Например,

Такие преобразования логарифма называются логарифмированием. Преобразования обратные логарифмированию называются потенцированием.

Глава 2. Элементы высшей математики.

1. Пределы

Пределом функции
является конечное число А, если при стремлении xx 0 для каждого наперед заданного
, найдется такое число
, что как только
, то
.

Функция, имеющая предел, отличается от него на бесконечно малую величину:
, где- б.м.в., т.е.
.

Пример. Рассмотрим функцию
.

При стремлении
, функцияy стремится к нулю:

1.1. Основные теоремы о пределах.

    Предел постоянной величины равен этой постоянной величине

.

    Предел суммы (разности) конечного числа функций равен сумме (разности) пределов этих функций.

    Предел произведения конечного числа функций равен произведению пределов этих функций.

    Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен нулю.

Замечательные пределы

,
, где

1.2. Примеры вычисления пределов

Однако, не все пределы вычисляются так просто. Чаще вычисление предела сводится к раскрытию неопределенности типа: или .

.

2. Производная функции

Пусть мы имеем функцию
, непрерывную на отрезке
.

Аргумент получил некоторое приращение
. Тогда и функция получит приращение
.

Значению аргумента соответствует значение функции
.

Значению аргумента
соответствует значение функции .

Следовательно, .

Найдем предел этого отношения при
. Если этот предел существует, то он называется производной данной функции.

Определение 3Производной данной функции
по аргументу называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента произвольным образом стремится к нулю.

Производная функции
может быть обозначена следующим образом:

; ; ; .

Определение 4Операция нахождения производной от функции называетсядифференцированием.

2.1. Механический смысл производной.

Рассмотрим прямолинейное движение некоторого твердого тела или материальной точки.

Пусть в некоторый момент времени движущаяся точка
находилась на расстоянии от начального положения
.

Через некоторый промежуток времени
она переместилась на расстояние
. Отношение =- средняя скорость материальной точки
. Найдем предел этого отношения, учитывая что
.

Следовательно, определение мгновенной скорости движения материальной точки сводится к нахождению производной от пути по времени.

2.2. Геометрическое значение производной

Пусть у нас есть графически заданная некоторая функция
.

Рис. 1. Геометрический смысл производной

Если
, то точка
, будет перемещаться по кривой, приближаясь к точке
.

Следовательно
, т.е. значение производной при данном значении аргумента численно равняется тангенсу угла образованного касательной в данной точке с положительным направлением оси
.

2.3. Таблица основных формул дифференцирования.

Степенная функция

Показательная функция

Логарифмическая функция

Тригонометрическая функция

Обратная тригонометрическая функция

2.4. Правила дифференцирования.

Производная от

Производная суммы (разности) функций


Производная произведения двух функций


Производная частного двух функций


2.5. Производная от сложной функции.

Пусть дана функция
такая, что ее можно представить в виде

и
, где переменнаяявляется промежуточным аргументом, тогда

Производная сложной функции равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по x.

Пример1.

Пример2.

3. Дифференциал функции.

Пусть есть
, дифференцируемая на некотором отрезке
и пустьу этой функции есть производная

,

тогда можно записать

(1),

где - бесконечно малая величина,

так как при

Умножая все члены равенства (1) на
имеем:

Где
- б.м.в. высшего порядка.

Величина
называется дифференциалом функции
и обозначается

.

3.1. Геометрическое значение дифференциала.

Пусть дана функция
.

Рис.2. Геометрический смысл дифференциала.

.

Очевидно, что дифференциал функции
равен приращению ординаты касательной в данной точке.

3.2. Производные и дифференциалы различных порядков.

Если есть
, тогда
называется первой производной.

Производная от первой производной называется производной второго порядка и записывается
.

Производной n-го порядка от функции
называется производная (n-1)-го порядка и записывается:

.

Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка.

.

.

3.3 Решение биологических задач с применением дифференцирования.

Задача1. Исследования показали, что рост колонии микроорганизмов подчиняется закону
, гдеN – численность микроорганизмов (в тыс.),t –время (дни).

б) Будет ли в этот период численность колонии увеличиваться или уменьшаться?

Ответ. Численность колонии будет увеличиваться.

Задача 2. Вода в озере периодически тестируется для контроля содержания болезнетворных бактерий. Черезt дней после тестирования концентрация бактерий определяется соотношением

.

Когда в озере наступит минимальная концентрация бактерий и можно будет в нем купаться?

РешениеФункция достигает max или min, когда ее производная равна нулю.

,

Определим max или min будет через 6 дней. Для этого возьмем вторую производную.


Ответ: Через 6 дней будет минимальная концентрация бактерий.



Понравилась статья? Поделиться с друзьями: