Ход работы. Наблюдение действия магнитного поля на ток 1 наблюдение действия магнитного поля на ток

Лабораторная работа № 11. Наблюдение явления интерференции и дифракции света.
Цель работы: экспериментально изучить явление интерференции и дифракции света, выявить условия возникновения этих явлений и характер распределения световой энергии в пространстве..
Оборудование: электрическая лампа с прямой нитью накала (одна на класс), две стеклянные пластинки, ПВХ трубка, стакан с раствором мыла, кольцо проволочное с ручкой диаметром 30 мм., лезвие, полоска бумаги ј листа, капроновая ткань 5х5см, дифракционная решетка, светофильтры.

Краткая теория
Интерференция и дифракция – это явления характерное для волн любой природы: механических, электромагнитных. Интерференция волн – сложение в пространстве двух (или нескольких) волн, при котором в разных его точках получается усиление или ослабление результирующей волны. Интерференция наблюдается при наложении волн, испущенных одним и тем же источником света, пришедших в данную точку разными путями. Для образования устойчивой интерференционной картины необходимы когерентные волны - волны, имеющие одинаковую частоту и постоянную разность фаз. Когерентные волны можно получить на тонких пленках оксидов,жира,на воздушном клине-зазоре между двумя прозрачными стеклами,прижатых друг к другу.
Амплитуда результирующего смещения в точке С зависит от разности хода волн на расстоянии d2 – d1.
[ Cкачайте файл, чтобы посмотреть картинку ]Условие максимума-(усиления колебаний):разность хода волн равна четному числу полуволн
где k=0; ± 1; ± 2; ± 3;
[ Cкачайте файл, чтобы посмотреть картинку ]Волны от источников А и Б придут в точку С в одинаковых фазах и “усилят друг друга.
Если же разность хода равна нечётному числу полуволн, то волны ослабят друг друга и в точке их встречи будет наблюдаться минимум.

[ Cкачайте файл, чтобы посмотреть картинку ][ Cкачайте файл, чтобы посмотреть картинку ]
При интерференция света происходит пространственное перераспределение энергии световых волн..
Дифракция – явление отклонения волны от прямолинейного распространения при прохождении через малые отверстия и огибании волной малых препятствий.
Дифракция объясняется принципом Гюйгенса –Френеля: каждая точка препятствия,до которого дошла аолна,становится источником вторичныхволн,когерентных,которые распространяются за края препятствия и интерферируют друг с другомЮобразуя устойчивую интерференционную картину-чередование максимумов и минимумов освещенности,радужно окрашенных в белом свете. Условие проявления дифракции: Размеры препятствий (отверстий) должны быть меньше или соизмеримы с длиной волны.Дифракция наблюдается на тонких нитях,царапинах на стекле,на щели-вертикальном прорезе в листе бумаги,на ресницахна капельках воды на запотевшем стекле,на кристалликах льда в облаке или на стекле,на щетинках хитинового покрова насекомых,на перьях птиц,на CD-дисках,обёрточной бумаги.,на дифракционной решетке.,
Дифракционная решетка оптический прибор, представляющий собой периодическую структуру из большого числа регулярно расположенных элементов, на которых происходит дифракция света. Штрихи с определенным и постоянным для данной дифракционной решетки профилем повторяются через одинаковый промежуток d (период решетки). Способность дифракционной решетки раскладывать падающий на нее пучек света по длинам волн является ее основным свойством. Различают отражательные и прозрачные дифракционные решетки. В современных приборах применяют в основном отражательные дифракционные решетки.

Ход работы:
Задание 1. А) Наблюдение интерференции на тонкой пленке:
Опыт 1. Опустите проволочное кольцо в мыльный раствор. На проволочном кольце получается мыльная плёнка.
Расположите её вертикально. Наблюдаем светлые и тёмные горизонтальные полосы, изменяющиеся по ширине и по цвету по мере изменения толщины пленки. Рассмотрите картину сквозь светофильтр.
Запишите,сколько наблюдается полос и как чередуются цвета в них?
Опыт 2. С помощью ПВХ- трубки выдуйте мыльный пузырь и внимательно рассмотрите его. При освещении его белым светом наблюдайте образование интерференционных пятен, окрашенных в спектральные цвета.Рассмотрите картину сквозь светофильтр.
Какие цвета доступны наблюдению в пузыре и как они чередуются сверху вниз?
Б) Наблюдение интерференции на воздушном клине:
Опыт 3. Тщательно протрите две стеклянные пластинки, сложите вместе и сожмите пальцами. Из-за не идеальности формы соприкасающихся поверхностей между пластинками образуются тончайшие воздушные пустоты-это воздушные клинья,на них возникает интерференция. При изменении силы, сжимающей пластинки,изменяется толщина воздушного клина,что приводит к изменению расположения и формы интерференционных максимумов и минимумов.Затем рассмотрите картину сквозь светофильтр.
Зарисуйте увиденные вами в белом свете и увиденное сквозь светофильтр.

Сделайте вывод:Почему возникает интерференция,как объяснить цвет максимумов в интерференционной картине,что влияет на яркость и цвет картины.

Задание 2.Наблюдение дифракции света.
Опыт 4. Лезвием прорезаем щель в листе бумаги, прикладываем бумагу к глазам и смотрим сквозь щель на источник света-лампу. Наблюдаем максимумы и минимумы освещенности.Затем рассмотрите картину через светофильтр.
Зарисуйте увиденную в белом свете и в монохроматическом свете дифракционную картину.
Деформируя бумагу уменьшаем ширину щели, наблюдаем дифракцию.
Опыт 5.Рассмотреть сквозь дифракционную решетку источник света-лампу.
Как изменилась дифракционная картина?
Опыт 6. Посмотрите сквозь капроновую ткань на нить светящей лампы. Поворачивая ткань вокруг оси, добейтесь четкой дифракционной картины в виде двух скрещенных под прямым углом дифракционных полос.
Зарисуйте наблюдаемый дифракционный крест. Объясните это явление.
Сделайте вывод: почему возникает дифракция,как объяснить цвет максимумов в дифракционной картине,что влияет на яркость и цвет картины.
Контрольные вопросы:
Что общего между явлением интерфк\еренции и явлением дифракции?
Какие волны могут давать устойчивую интерференционную картину?
Почему на ученическом столе не наблюдается интерференционная картина от ламп,подвешенных к потолку в классе?

6. Как объяснить цветные круги вокруг Луны?


Приложенные файлы

1. Подготовьте в тетради таблицу для записи результатов измерений и вычислений:

I , А

I ср , А

m, кг

t, с

e, Кл

I 1 = ; I 2 = ; I 3 = ; I 4 = ; I 5 = ; I 6 = ; I 7 = ; I 8 = ; I 9 = ; I 10 = ; I 11 = ; I 12 = ; I 13 = ; I 14 =; I 15 = ;

    Измерьте массу m 1 электрода, который в последствии будет подключен к отрицательному по­люсу источника электропитания.

    Соберите электрическую цепь. Электроды подключают к цепи, вставляя их отогнутые лепестки в прорези штекеров соединительных проводов.

    Проверьте правильность сборки цепи и надежность крепления соединительных поводов.

    Подключите источник питания к электросети и заполните кювету раствором медного купороса.

    Замкните ключ и одновременно с этим начните отсчет времени. Запишите первое показание амперметра I 1

    На протяжении 15-20 минут с интервалом в одну минуту измеряйте и записывайте величину силы тока в цепи.

    Через 15-20 минут с момента замыкания ключа разомкните его, отключите источник электро­питания и разберите цепь.

    Промойте и высушите катод.

    Вычислите среднее значение силы тока I ср.

    Измерьте массу катода т 2 .

    Вычислите массу осевшей на катоде меди: m = m 1 – m 2 .

    Определите по формуле (1) величину заряда электрона.

  1. Наблюдение действия магнитного поля на ток

Цель работы: экспериментально определить зависимость действия магнитного поля на проводник с током от силы и направления тока в нем.

Оборудование: источник электропитания, катушка-моток, переменный резистор, ключ, полосовой магнит, штатив с муфтой и лапкой, соединительные провода.

В работе исследуют взаимодействие проволочной катушки-мотка, подвешенной на штативе, с постоянным магнитом, также установленном на этом штативе рядом с катушкой. Последова­тельно с катушкой включают переменное сопротивление, что позволяет менять в ходе опыта силу тока в ней. Электрическая схема установки показана на рисунке 1.

Ход работы.

    Изменив подключение соединительных поводов к источ­нику питания, установите, как зависит действие магнит­ного поля на катушку от направления тока в ней.

    Измените положение полюсов магнита на противополож­ное и повторите действия, указанные в пунктах 3, 4 и 5.

    Для каждого этапа опыта сделайте схематичные рисунки, отражающие изменения во взаимодействии магнита и ка­тушки при изменении режимов работы установки.

    Укажите на рисунках направления магнитного поля маг­нита, тока в катушке и магнитного поля катушки.

    Объясните результаты наблюдений.

1. ЦЕЛЬ РАБОТЫ. Наблюдение действия магнитного поля на моток с током, на прямолинейный проводник с током.

2. ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ. Проволочный моток, штатив, источник постоянного тока, ключ, полосовой магнит, дугообразный магнит, прямолинейный проводник.

КРАТКАЯ ТЕОРИЯ

Перечислим основные свойства магнитного поля, которые предстоит экспериментально наблюдать, и вопросы, которыми должен владеть студент, приступающий к выполнению настоящей лабораторной работы.

1. Магнитное поле действует на проводник с током.

2. - индукция магнитного поля, векторная физическая величина, является силовой характеристикой магнитного поля.

3. Магнитное поле можно изображать графически с помощью силовых линий. Касательная к силовой линии имеет направление, совпадающее с направлением вектора .

4. На рисунке 1 с помощью силовых линий изображены магнитные поля полосового магнита, кольца с током, катушки с током, дугообразного магнита. N – северный магнитный полюс, S – южный магнитный полюс.

5. При взаимодействии источников магнитного поля одноименные полюсы взаимно отталкиваются, разноименные полюсы взаимно притягиваются.

6. Сила, действующая на провод с током в магнитном поле (закон Ампера):

F а = I B l sina , (1)

где I – сила тока в проводнике; B – индукция магнитного поля; l длина проводника ; a - угол между проводником и вектором . Направление вектора силы F а определяется правилом левой руки.

РАБОЧЕЕ ЗАДАНИЕ

Наблюдение действия магнитного поля полосового магнита на моток с током.

4.1.1. Подвесьте моток проволоки на штативе, концы проволоки подключите через ключ к источнику тока.

4.1.2. Поднесите к висящему мотку полосовой магнит и, замыкая ключ, пронаблюдайте движения мотка.

4.1.3. Зарисуйте относительное расположение мотка и магнита.

4.1.4. Результаты наблюдения занесите в таблицу 1.

Таблица 1.

Действие магнитного поля на прямолинейный проводник с током.

4.2.1. Расположите висящий проводник между полюсами дугообразного магнита.

4.2.2. Зарисуйте относительное расположение дугообразного магнита и прямолинейного проводника.

4.2.3. Замкните ключ электрической цепи и пронаблюдайте движение проводника.

4.2.4. Поменяйте полярность подключения источника тока (через проводник потечет обратный ток) и пронаблюдайте движение проводника.

4.2.5. Результаты наблюдения занесите в таблицу 2.

Таблица 2.

ВЫВОД

В выводе проанализируйте экспериментальные результаты и дайте ответ на следующие вопросы.

1. Действует ли магнитное поле на проводник с током, на проводник без тока?

2. Подтверждают ли результаты задания 4.1 пункт 5 из раздела «КРАТКАЯ ТЕОРИЯ »?

3. Подтверждают ли результаты задания 4.2 пункт 6 из раздела «КРАТКАЯ ТЕОРИЯ »?

КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. На что действует магнитное поле?

6.2. Какая физическая величина является силовой характеристикой магнитного поля, как она используется?

6.3. Что такое силовая линия магнитного поля, для чего используются силовые линии?

6.4. Изобразите магнитное поле полосового магнита с помощью силовых линий. Укажите северный и южный магнитные полюсы магнита.

6.5. Как взаимодействуют между собою одноименные магнитные полюсы, разноименные магнитные полюсы?

6.6. Как определяются величина и направление силы, действующей на провод с током в магнитном поле?

Оборудование: штатив с муфтой и лапкой, источник питания, проволочный моток, дугообразный магнит, ключ, соединительные провода.

Указания к выполнению работы

1. Соберите установку, показанную на рисунке 144, б. Поднеся к проволочному мотку магнит, замкните цепь. Обратите внимание на характер магнитного взаимодействия мотка и магнита.


2. Поднесите к мотку магнит другим полюсом. Как изменился характер взаимодействия мотка и магнита?

3. Повторите опыты, расположив магнит с другой стороны мотка.

4. Расположите проволочный моток между полюсами магнита так, как это показано на рисунке 144, а. Замкнув цепь, наблюдайте явление. Сделайте выводы.

В работе № 4 мы рассмотрим взаимодействие соленоида с магнитом. Как известно, в соленоиде под током возникает магнитное поле, которое будет взаимодействовать с постоянным магнитом. Мы проведем серию из четырех опытов с различным расположением катушки и магнита. Следует ожидать, что их взаимодействие также будет различным (притягивание или отталкивание).

Примерный ход выполнения работы:

Мы наблюдаем следующие явления, которые удобно представить в виде рисунков:




Понравилась статья? Поделиться с друзьями: