Какие карбоновые кислоты участвуют в построении. Одноосновные непредельные карбоновые кислоты

Таблица 16. Высшие карбоновые кислоты

Структурная формула ВЖК Название
Предельные ВЖК:
СН 3 –(СН 2) 10 –СООН Лауриновая кислота, додекановая кислота
СН 3 –(СН 2) 12 –СООН Миристиновая кислота, тетрадекановая кислота
СН 3 –(СН 2) 14 –СООН Пальмитиновая, кислота гексадекановая кислота
СН 3 –(СН 2) 16 –СООН Стеариновая кислота, октадекановая кислота
Непредельные ВЖК:
CH 3 (CH 2) 7 CH=CH(CH 2) 7 COOH или Олеиновая кислота, цис -9-октадеценовая кислота
СH 3 (CH 2) 4 CH=CHCH 2 CH=CH(CH 2) 7 COOH или Линолевая кислота, 9-цис-, 12-цис -октадекадиеновая кислота
СH 3 CH 2 CH=CHCH 2 CH=CHCH 2 CH=CH(CH 2) 7 COOH или Линоленовая кислота, 9-цис-, 12-цис -,15-цис- октадекатриеновая кислота
СH 3 (CH 2) 4 CH=CHCH 2 CH=CHCH 2 CH=CHCH 2 CH=CH(CH 2) 3 CO 2 H или Арахидоновая кислота, 5-цис-, 8-цис -,12-цис-15-цис- эйкозатетраеновая кислота

Содержатся в жирах. Они по своему строению одноосновны, имеют неразветвленную цепь углеродных атомов и содержат в молекулах четное число атомов углерода (С 12 – С 18). Ненасыщенные карбоновые кислоты, входящие в состав жиров, имеют цис-конфигурацию молекулы по отношению к двойным связям (см. табл. 13). Химические свойства высших карбоновых кислот напоминают свойства низших карбоновых кислот. С участием карбоксильной группы они вступают в реакции образования солей (мыла) галогенангидридов, ангидридов, амидов, сложных эфиров, нитрилов. Непредельные жирные кислоты также вступают в реакции по двойным связям (гидрирование, галогенирование, окисление).

Высшие кислоты находятся в природе, прежде всего, в составе жиров – полных сложных эфиров глицерина – причем жиры являются глицеридами не только одинаковых (простые ацилглицерины), но в основном разных кислот (смешанные ацилглицерины). Соотношение остатков карбоновых кислот меняется при переходе от одного жира к другому: каждый жир имеет свой характерный состав, мало изменяющийся от образца к образцу. Животные жиры, содержащие, главным образом, ацилглицерины предельных кислот, – твердые вещества. Растительные жиры, обычно называемые маслами, содержат глицериды непредельных кислот. Они являются преимущественно жидкостями, например подсолнечное, оливковое, конопляное и льняное масло.

В химическом отношении жиры – типичные сложные эфиры. Им характерны реакции гидролиза и присоединения по двойным связям ненасыщенных радикалов:

Жиры имеют большое значение в жизнедеятельности человека. Они выполняют функцию энергетического запаса, отлагаясь в тканях организма. По теплотворной способности жиры занимают первое место среди питательных веществ: 1 г жира при сгорании дает 9300 кал. Непредельные кислоты с системой связи –CH=CHCH 2 CH=CН– организм человека не синтезирует, но они должны входить в состав рациона для полноценного питания. Данные кислоты образуют липиды клеточных стенок и играют большую роль в придании им полупроницаемости при задерживании одних веществ и пропускании других.

Жиры служат исходным материалом в производстве глицерина и мыла. Высшие карбоновые кислоты, содержащие 24–32 атома углерода и спирты с числом атомов углерода от 16 до 30, входят в состав восков.

Фосфатиды (фосфолипиды) – диацилглицерины жирных кислот, в которых глицерин частично этерифицирован фосфорной кислотой, а кислота вторым своим гидроксилом этерифицирует аминоспирты –

холин HO–CH 2 CH 2 –N + (CH 3) 3 или этаноламин HO–CH 2 CH 2 –NH 2 .

Фосфатиды входят в состав клеток и тканей животных (мозговая и нервная ткань, куриный желток) и раститетельных организмов, в куриный желток и играют важную роль в биологических процессах: при передаче нервного возбуждения, для регулирования проницаемости оболочек клеток и т.д.

Контрольные вопросы к главе 12 «Карбоновые кислоты»

№ 1 Чем объясняются кислотные свойства карбоновых кислот и чем определяется их сила? Что такое рК а кислоты? Почему в карбоновой кислоте связи С-О различные по длине, а в карбоксилат-анионе одинаковые? Почему относительную силу кислот можно оценивать по стабильности их анионов?

Расположите соединения в ряд по возрастанию их кислотных свойств:

(а) a-бромпропионовая кислота, a,a-дибромпропионовая кислота, b-бромпропионовая кислота, a,b-дибромпропионовая кислота, пропионовая кислота; (б) бензойная кислота, 4-хлорбензойная кислота, 2,4,6-трихлор-бензойная кислота, 2,4-дихлорбензойная кислота; (в)триметилуксусная кислота, трифторуксусная кислота, уксусная кислота, пропионовая кислота, трихлоруксусная кислота; (г)муравьиная кислота, уксусная кислота, изомасляная кислота, щавелевая кислота; (д) иодуксусная кислота, бромуксусная кислота, уксусная кислота, хлоруксусная кислота, трифторуксусная кислота.

№ 2. Какие существуют способы повышения выхода сложного эфира при проведении реакции этерификации кислоты спиртом? Покажите механизм этерификации валериановой кислоты метанолом в прис. H 2 SO 4 . Что такое переэтерификация? Приведите механизм этой реакции на примере синтеза октилового эфира пропионовой кислоты.

№ 3. Приведите механизмы кислотного и щелочного гидролиза метилового эфира бензойной кислоты. Объясните, почему щелочи катализируют только гидролиз сложных эфиров, но не их образование. Если гидролиз метилбензоата проводить водой, меченной изотопом 18 О, то в составе какого продукта гидролиза обнаружится 18 О?

№ 4. Какие функциональные производные карбоновых кислот вам известны? Укажите методы их получения, свойства и взаимосвязь.

№ 5. Что такое реакции ацилирования? Приведите примеры. Расположите в ряд по уменьшению ацилирующих свойств производные карбоновых кислот: бромангидрид уксусной кислоты, уксусный ангидрид, хлорангидрид уксусной кислоты, ангидрид масляной кислоты.

№ 6. Как различить: (а) муравьиную и уксусную кислоты; (б) щавелевую и уксусную кислоты; (в) щавелевую и янтарную кислоты; (г) малеиновую и фумаровую кислоты; (д) олеиновую и лауриновую кислоты.

№ 7. Главные глицериды хлопкового масла – пальмитоолеолинолеин пальмитодиолеин,трилинолеин. Напишите структурные формулы этих веществ.

№ 8. Напишите уравнения реакций и назовите образующиеся продукты:(а)муравьиной кислоты с пентанолом-1;(б)бензойной кислоты с хлористым тионилом; (в) щелочного гидролиза этилового эфира янтарной кислоты; (г) дегидратации ангидрида масляной кислоты с P 2 O 5 ; (д) уксусного ангидрида с диметиламином; (е) расшифруйте схему превращений:

№ 9. Напишите схемы синтеза следующих соединений: (а) изомасляной кислоты из пропанола-1; (б) a-хлорфенилуксусной кислоты из толуола; (в)бензамида из толуола; (г) α-метилянтарной (2-метилбутандиовой-1,4) кислоты из пропилена; (д)циклопентанкарбоновую кислоту из циклопентана.

№10. Напишите схемы синтеза следующих кислот, используя малоновый эфир и необходимые алкилгалогениды: (а) b-фенилпропионовой кислоты; (б) пентен-4-овой кислоты; (в) 2-этил-3-фенилпропановой кислоты; (г)диэтил-уксусной кислоты; (д) α-метилянтарной (2-метилбутандиовой-1,4) кислоты.

№ 11. Установите строение соединений: (а) С 3 Н 4 О 4 , обладает кислыми свойствами, с этанолом дает вещество С 7 Н 12 О 4 ; при нагревании исходного вещества выделяется СО 2 и образуется вещество С 2 Н 4 О 2 , водный ра­створ которого также имеет рН<7; (б) С 4 Н 8 О 2 , реагирует с раствором Na 2 CO 3 с выделением газа, при сплавлении с щелочью образуется пропан, с Са(ОН) 2 дает соединение С 8 Н 14 О 4 Са, при пиролизе которого получается дипропилкетон; (в) С 4 Н 8 О 2 , нерастворяяется в воде, не реагирует с карбонатом натрия, а при кислотном гидролизе образует хорошо растворимые в воде вещества С 2 Н 6 О и С 2 Н 4 О 2 , последнее вещество способно реагировать с эквимолярным количеством NaOH; (г) С 4 Н 6 О 2 , при озонолизе образует формальдегид и пировиноградную кислоту СН 3 -СО-СООН.

ГИДРОКСИКИСЛОТЫ

Определение. Гидроксикислоты – соединения, в молекулах которых содержатся гидроксильная и карбоксильная группы.

Классификация

1) Функциональные группы гидроксикислот могут быть присоединены к

алифатической цепи молекулы (спиртокислоты) или к ароматическому кольцу (фенолокислоты):

п -гидроксибензойная кислота миндальная кислота (α-оксифенилуксусная кислота)

(фенолокислота) (спиртокислота)

2) По взаимному расположению функциональных групп гидроксикислоты

делятся на α-, β-, γ- и др. замещенные. Буквы греческого алфавита указывают положение гидроксильной группы относительно карбоксильной, причем отсчет ведется от ближайшего к карбоксильной группе атома углерода (от атома С-2).

α-гидроксимасляная кислота β-гидроксимасляная кислота

3) По количеству карбоксильных групп различают одноосновные, двухосновные, многоосновные гидроксикислоты:

молочная кислота тартроновая кислота лимонная кислота

(одноосновная) (двухосновная) (трехосновная)

4) По количеству гидроксильных групп гидроксикислоты делят на одноатомные, двухатомные и т.д.:

яблочная кислота (одноатомная) винная кислота (двухатомная)

Систематические названия гидроксикислот строятся по общим принципам заместительной номенклатуры, однако для многих широко распространенных представителей предпочтительными являются тривиальные названия.

Получение. a-Гидроксикислоты удобно получать гидролизом a-галоген-замещенных карбоновых кислот и оксинитрильным методом из карбонильных соединений.

ного синтеза подвергаются бензоиновой конденсации. В этих случаях циангидрин получают из соответствующего гидросульфитного производного действием NaCN:

К другим методам синтеза относят­ся: реакции a-аминокислот с азотистой кислотой, мягкое окисле­ние гликолей R-СH(OH)-CH 2 OH и восстановление эфиров кетонокислот.

R–CH–COOH HNO 2 R–CH–COOH + N 2 + H 2 O

│ ¾¾¾¾¾® │

R-СH-CH 2 OH OH R–CH–COONH 4 + Ag ↓ + NH 3 + H 2 O

│ ¾¾¾¾¾¾¾¾¾® │

R–C–COOСH 3 ¾¾® R–CH–COOCH 3 ¾¾® R–CH–COOH

║ (Ni) │ (H+) │

b-Гидроксикислоты обычно получают, используя реакции мягкого окисле­ния альдолей (аммиакат серебра, бромная вода), гидратации a,b-непредельных карбоновых кислот или методом Реформатского, который заключается во взаимодействии карбонильных соединений с цинковой пылью и эфирами a-галогензамещенных карбоновых кислот:

β-Гидроксикислоты можно также получать, иcпользуя общие методы: например, заменой галогена и восстановлением карбонильной группы, если они находятся в β-положении по отношению к карбоксильной группе:

Фенолкарбоновые кислоты синтезируют по реакции Кольбе – Шмидтапри нагревании фенолятовщелочных металлов с оксидом углерода (IV). Использование фенолята натрия приводит к о -оксибензойной кислоте:

Использование фенолята калия по аналогичной схеме дает к ее п -изомер.

Химические реакции

В реакциях, характерных для карбоксильной и гидроксильной групп, могут затрагиваться как та, так и другая или обе одновре­менно. В последнем случае для проведения реакции по одной из групп используют методы защиты другой.

Таблица 17. Реакции функциональных групп гидроксикислот с реагентами

Схема 16. Химические реакции молочной кислоты

Фенолокислоты в отличие от спиртокислот при взаимодействии с гидроксидом натрия реагируют обеими функциональными группами, а в случае обработки бромоводородом фенольный гидроксил проявит инертность.

В результате ацилирования салициловой кислоты уксусным ангидридом получают лекарственный препарат – аспирин (ацетилсалициловую кислоту):

Салициловая кислота аспирин

Фенолокислотыэтерифицируются по карбоксильной группе спиртами в присутствии минеральной кислоты, однако низкая нуклеофильность фенолов не позволяет таким способом получить фенилацетат. Поэтому салициловую кислоту предварительно превращают в более активный ацилирующий агент – ее хлорангидрид, которым затем ацилируют фенол:

Специфической реакцией гидроксикислот является дегидратация при нагрева­нии, причем в зависимости от их типа реакции идут по разным схемам, приводящим к различным продуктам:

а) a-гидроксикислоты обычно образуют продукты межмолекулярной реакции - лактиды:

б) b-гидроксикислоты превращаются в a,b-непредельные кислоты:

CН 3 –СН 2 –СН–СН 2 –СООН ¾¾¾® CН 3 –СН 2 –СН=СН–СООН

в) g- и d-гидроксикислоты дают циклические эфиры (лактоны):

γ-гидроксимасляная кислота γ-бутиролактон

δ-гидроксикапроновая кислота δ-капролактон

Внутримолекулярную этерификацию g-гидроксикарбоновой кислоты до g-лактона в кислой среде можно представить следующей схемой:

г) при нагревании лимонная кислота (как b-гидроксикислота) превращается в аконитовую кислоту, которая распадается далее на смесь итаконового и цитраконового ангидридов. В присутствии H 2 SO 4 лимонная кислота (как a-гидроксикислота) отщепляет муравьиную кислоту и образует ацетондикарбоновую кислоту

аконитовая кислота итаконовый ангидрид цитраконовый ангидрид

лимонная кислота ацетондикарбоновая кислота ацетон

д) винная кислота при нагревании теряет воду и декарбоксилируется, превращаясь в пировиноградную кислоту:

Оптическая изомерия. Растворы некоторых органических веществ способны отклонять плоскость плоскополяризованного света на определенный угол. Такие соединения называются оптически активными и существуют в виде двух оптических изомеров: один из этих изомеров вращает плоскость поляризации влево, другой (в одинаковых условиях) на такой же угол вправо. Для обозначения этого явления пользуются знаками (+) и (─), которые ставят перед названием оптического изомера. Такие изомеры называют энантиомерами. Смесь, состоящую из равных количеств левовращающего и правовращающего изомеров, называют рацематом и обозначают символом (+ ). Рацемат оптически неактивен из-за взаимной компенсации оптической активности входящих в него оптических изомеров. Одной из причин появления оптической активности у некоторых органических веществ является наличие в молекуле асимметрического атома углерода, у которого все четыре валентности соединены с различными заместителями. Любое органическое вещество, содержащее асимметрический атом, можно представить в виде двух пространственных форм, которые отличаются друг от друга как предмет от зеркального отображения. При наложении этих пространственных форм нельзя добиться их совмещения. Такая изомерия получила название «зеркальной». Молекулы, несовместимые в пространстве и относящиеся друг к другу как зеркальные отображения, являются хиральными; у них отсутствуют плоскости и центры симметрии. При наличии в молекуле нескольких (n ) асимметрических атомов углерода, общее число стереоизомеров (N ) (сюда входят зеркальные изомеры – энантиомеры и диастереомеры – незеркальные изомеры) определяют по формуле: N = 2 n .

При изображении оптически активных изомеров используют проекционные формулы Фишера. Для этого главную цепь молекулы гидроксикислоты располагается вертикально с первым атомом углерода вверху (карбоксильная группа). Тетраэдр асимметрического атома углерода, содержащий четыре раз-

Если при таком построении функциональная группа ОН оказы­вается справа, то соединение относится к D-ряду, если слева, то к L-ряду.

При изменении положения проекционной формулы на плоскости, во избежание искажения стереохимического смысла, преобразования проводят с соблюдением следующих правил:

1. Проекционные формулы Фишера нельзя выводить из плоскости бумаги, ее нельзя поворачивать на 90° (допустим поворот на 180°):

Допустимо фиксирование одной группы и вращение трех остальных по часовой стрелки или против часовой стрелки:

2. В проекциях Фишера однократная взаимная перестановка любых двух групп приводит к превращению энантиомера в его зеркальное изображение, а

при перестановке местами заместителей у одного асимметрического центра четное число раз стереохимическая конфигурация соединения сохраняется.

3. Проекционные формулы Фишера нельзя применять к молекулам, хиральность которых обусловлена не наличием асимметрического атома, а другими причинами.

Для обозначения конфигурации асимметиричесих атомов в хиральных (оптически активные) молекулах в настоящее время используют D,L- (см. выше) и R,S- системы обозначений. В основу R,S-системы обозначения конфигурации положен принцип старшинства заместителей, окружающих центр хиральности. Для этого проекционную формулу Фишера преобразуют так, чтобы младший заместитель разместился внизу, на вертикальной связи. Если после преобразования проекции падение старшинства заместителей остальных трех группировок проходит против часовой стрелки, то асимметрическому атому приписывают S-конфигурацию. Падение старшинства по часовой стрелке соответствует R-конфигурации. Старшинство заместителей определяется следующими правилами:

1. Если с хиральным центром (асимметрический атом угле­рода) связаны четыре различных атома, то старшим является атом с большим атомным номером (I > Вг > Cl > S > Р > F >N > ОН).

2. Если старшинство групп нельзя определить с помощью пра­вила 1, то необходимо провести аналогичное сравнение следую­щих атомов в группе:

а) -СН 2 С1 > -СН 2 ОН > -СН 2 СН 3 ;

б) -С(СН 3) 3 > -СН(СН 3) 2 > -СН 2 СН 3 > -СН 3 ;

в) СН 3 -О-СН-СН 2 СН 3 > Н-О-СН-СН 2 СН 3 .

3. Если группа содержит двойную (тройную) связь, то ее ато­мы следует удвоить (утроить). Так, -СН=СН 2 эквивалентна -CH-CH 2 -

Эквивалентна ; -CºN эквивалентна

а) СН 3 -СН-СН 2 СН 3 > -СН=СН 2 > -СН 3 ;

б) -СООСН 3 > -СООН > -CONH 2 > -СНО;

в) -CºN > -С 6 Н 5 > -СºСН > -СН=СН 2 .

4. Старшинство изотопов убывает с уменьшением их массы (Т> D > Н). При обозначении конфигурации по R,S-системе рас­сматривается модель хиральной молекулы, кото­рую располагают так, чтобы младший заместитель (атом водорода) был удален от глаза наблюдателя. Если падение старшинства остальных заместителей происходит по ходу часовой стрелки, то соединению приписывают R-конфигурацию, если против - S-конфигурацию.

Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

ОПРЕДЕЛЕНИЕ

Органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом, называют карбоновыми кислотами .

Первые три члена гомологического ряда карбоновых кислот, включая пропионовую кислоту, — жидкости, имеющие резкий запах, хорошо растворимые в воде. Следующие гомологи, начиная с масляной кислоты, — также жидкости, обладающие резким неприятным запахом, но плохо растворимые в воде. Высшие кислоты, с числом атомов углерода 10 и более, представляют собой твердые вещества, без запаха, нерастворимые в воде. В целом, в ряду гомологов с увеличением молекулярной массы уменьшается растворимость в воде, уменьшается плотность и возрастает температура кипения (табл. 1).

Таблица 1. Гомологический ряд карбоновых кислот.

Получение карбоновых кислот

Карбоновые кислоты получают окислением предельных углеводородов, спиртов, альдегидов. Например, уксусную кислоту - окислением этанола раствором перманганата калия в кислой среде при нагревании:

Химические свойства карбоновых кислот

Химические свойства карбоновых кислот обусловлены в первую очередь особенностями их строения. Так, растворимые в воде кислоты способны диссоциировать на ионы:

R-COOH↔R-COO — + H + .

Благодаря наличию в воде иона H + они имеют кислый вкус, способны менять окраску индикаторов и проводить электрический ток. В водном растворе эти кислоты - слабые электролиты.

Карбоновые кислоты обладают химическими свойствами, характерными для растворов неорганических кислот, т.е. взаимодействуют с металлами (1), их оксидами (2), гидроксидами (3) и слабыми солями (4):

2CH 3 -COOh + Zn → (CH 3 COO) 2 Zn + H 2 (1);

2CH 3 -COOH + CuO→ (CH 3 COO) 2 Cu + H 2 O (2);

R-COOH + KOH → R-COOK + H 2 O (3);

2CH 3 -COOH + NaHCO 3 → CH 3 COONa + H 2 O + CO 2 (4).

Специфическое свойство предельных, а также непредельных карбоновых кислот, проявляемое за счет функциональной группы, — взаимодействие со спиртами.

Карбоновые кислоты взаимодействуют со спиртами при нагревании и в присутствии концентрированной серной кислоты. Например, если к уксусной кислоте прилить этиловый спирт и немного серной кислоты, то при нагревании появляется запах этилового эфира уксусной кислоты (этилацетата):

CH 3 -COOH + C 2 H 5 OH ↔CH 3 -C(O)-O-C 2 H 5 + H 2 O.

Специфическое свойство предельных карбоновых кислот, проявляемое за счет радикала, — реакция галогенирования (хлорирования).


Применение карбоновых кислот

Карбоновые кислоты служат исходным сырьем для получения кетонов, галогенангидридов, виниловых эфиров и других важных классов органических соединений.

Муравьиная кислота широко применяется для получения сложных эфиров, используемых в парфюмерии, в кожевенном деле (дубление кож), текстильной промышленности (как протрава при крашении), в качестве растворителя и консерванта.

Водный раствор (70-80%-ной) уксусной кислоты называется уксусной эссенцией, а 3-9%-ный водный раствор - столовым уксусом. Эссенция нередко используется для получения уксуса в домашних условиях путем разведения.

Примеры решения задач

ПРИМЕР 1

Задание С помощью каких химических реакций можно осуществить следующие превращения:

а) CH 4 → CH 3 Cl → CH 3 OH → HCHO → HCOOH → HCOOK.

Напишите уравнения реакций, укажите условия их протекания.

Ответ а) Хлорирование метана на свету приводит к получению хлорметана:

CH 4 + Cl 2 →CH 3 Cl + HCl.

Галогенпроизводные алканов подвергаются гидролизу в водной или щелочной среде с образованием спиртов:

CH 3 Cl + NaOH→CH 3 OH + NaCl.

В результате окисления первичных спиртов, например, дихроматом калия в кислой среде в присутствии катализатора (Cu, CuO, Pt, Ag) образуются альдегиды:

CH 3 OH+ [O] →HCHO.

Альдегиды легко окисляются до соответствующих карбоновых кислот, например, перманганатом калия:

HCHO + [O] →HCOOH.

Карбоновые кислоты, проявляют все свойства, присущие слабым минеральным кислотам, т.е. способны взаимодействовать с активными металлами с образованием солей:

2HCOOH+ 2K→2HCOOK + H 2 .

ПРИМЕР 2

Задание Напишите уравнения реакций между следующими веществами: а) 2-метилпропановой кислотой и хлором; б) уксусной кислотой и пропанолом-2; в) акриловой кислотой и бромной водой; г) 2-метилбутановой кислотой и хлоридом фосфора (V). Укажите условия протекания реакций.
Ответ а) в результате реакции взаимодействия между 2-метилпропановой кислотой и хлором происходит замещение атома водорода в углеводородном радикале, находящемся в a-положение; образуется 2-метил-2-хлорпропановая кислота

H 3 C-C(CH 3)H-COOH + Cl 2 → H 3 C-C(CH 3)Cl-COOH + HCl (kat = P).

б) в результате реакции взаимодействия между уксусной кислотой и пропанолом-2 происходит образование сложного эфира - изопропиловый эфир уксусной кислоты.

CH 3 -COOH + CH 3 -C(OH)H-CH 3 → CH 3 -C(O)-O-C(CH 3)-CH 3 .

в) в результате реакции взаимодействия между акриловой кислотой и бромной водой присоединение галогена по месту двойной связи в соответствии с правилом Марковникова; образуется 2,3-дибромпропановая кислота

CH 2 =CH-COOH + Br 2 → CH 2 Br-CHBr-COOH

г) в результате реакции взаимодействия между 2-метилбутановой кислотой и хлоридом фосфора (V) образуется соответствующий хлорангидрид

CH 3 -CH 2 -C(CH 3)H-COOH + PCl 5 →CH 3 -CH 2 -C(CH 3)H-COOCl + POCl 3 + HCl.

Карбоновые кислоты.

Строение карбоновых кислот

Карбоновые кислоты - это органические соединения, которые характеризуются присутствием в их молекулах карбоксильной группы -СООН .



Является функциональной (характеристической) группой этого класса соединений. Примерами карбоновых кислот могут служить:


Свойства карбоновых кислот.

Кислотный характер этих соединений является результатом того, что атом водорода гидроксильной группы способен диссоциировать с образованием иона водорода, например:



Взаимодействуя с основаниями карбоновые кислоты образуют соли:



Карбоновые кислоты являются слабыми кислотами, поэтому их соли подвергаются обратимоми гидролизу. Наиболее сильные из карбоновых кислот муравьиная и уксусная .


Карбоновые кислоты со спиртами образуют сложные эфиры . Сложные эфиры – чрезвычайно важное соединение, очень часто встречающееся в продуктах животного и растительного мира.

Классификация карбоновых кислот.

Карбоновые кислоты можно классифицировать по различным признакам:

  1. По количеству гидрокильных групп (одно- и двухосновные),
  2. По числу атомов углерода (низшие, средние, высшие),
  3. По наличию в них предельных и не предельных связей (предельные и непредельные).
Одноосновные и двухосновные карбоновые кислоты.

Карбоновые кислоты делятся одноосновные и двухосновные в зависимости от кличества в их составе гидроксильных групп ОН.


Все карбоновые кислоты , рассмотренные выше – это примеры одноосновных кислот. В их сотавах содержится по одной гидроксильной группе.


Соответственно, в молекулах двухосновных кислот содержится по две гидроксильных группы. К двухосновным карбоновым кислотам относятся, например, щавелевая или терефталиевая кислоты.


Низшие, средние и высшие карбоновые кислоты.

По числу атомов углерода в молекуле карбоновые кислоты делят на:


Низшие (С1-С3 ),

Средние (С4-С8 ) и

Высшие (С9-С26 ).


Высшие карбоновые кислоты называют высшими жирными кислотами, по причине того, что они входят в состав природных жиров.


Но иногда жирными называют все ациклические карбоновые кислоты. Таким образом, термины «жирные кислоты » и «карбоновые кислоты » часто используются как синонимы .

Предельные и непредельные карбоновые кислоты.

Предельные карбоновые кислоты в своём составе, содержат радикал предельных углеводородов, т.е. радикал только с простыми, одинарными связями.


И наоборот, непредельные карбоновые кислоты в своём составе содержат радикал непредельных углеводородов, т.е. радикал, в котором присутствуют кратные (двойные и тройные) связи.

Высшие карбоновые (жирные) кислоты

Напомним, что высшим карбоновым кислотам относят такие карбоновые кислоты, молекулы которых содержат сравнительно большое число атомов углерода (С9-С26 ).


По причине того, что высшие карбоновые кислоты входят в состав животных и растительных жиров их называют высшими жирными кислотами.



Примеры предельных высших жирных кислот:

  1. Каприновая кислота - C 9 H 19 COOH ,
  2. Лауриновая кислота - С 11 Н 23 СООН ,
  3. Миристиновая кислота - С 13 Н 27 СООН ,
  4. С 15 Н 31 СООН ,
  5. Стеариновая кислота – С 17 Н 35 СООН .

Примеры непредельных высших жирных кислот:

    С 17 Н 33 СООН – имеет одну двойную связь,
  1. Линолевая кислота – С 17 Н 31 СООН - имеет две двойных связи,
  2. Линоленовая кислота – С 17 Н 29 СООН – имеет три двойных связи.

Структурные формулы соединений, в которых присутствуют длинные углеводородный радикалы, часто изображают следующим образом:



В углеводородной цепи атомы углерода расположены не по прямой линии, а виде «змейки». Угол между двумя соседними отрезками такой «змейки» 109 градусов 28 минут. В случае двойной связи угол другой.

В структурной формуле каждая вершина такой «змейки» означает атом углерода, соединённый с двумя атомами водорода. Последний атом углерода соединён с тремя атомами водорода. При этом сами символы углерода (С ) и водорода(Н ) не изображаются.


Предельные и непредельные жирные кислоты имеют в значительной степени различные свойства.


Высшие предельные кислоты – воскообразные вещества, непредельные – жидкости (напоминающие растительное масло).


Натриевые и калиевые соли высших жирных кислот называют мылами .

Например:


C 17 H 35 COONa – стеарат натрия,

С – пальмитат калия.


Натриевые мыла – твёрдые, калиевые – жидкие.

Примеры карбоновых кислот


– жилкость с острым раздражающим запахом.

Температура кипения 118,5 градусов С, при +16,6 градусах С застывает в кристаллическую массу, похожую на лёд.

Смешивается с водой в любых соотношениях.


Широко применяется как прправа к пище и консервирующее средство. В продаже встречается в виде уксусной эссенции (80%) и уксуса (9,3%).


Натуральный или винный уксус – продукт, содержащий уксусную кислоту и получающийся при скисании виноградного вина.


Используется также при синтезе многих органических веществ и в качестве растворителя.


Уксусную кислоту получают преимущественно синтезом из ацетилена – присоединением к нему воды и окислением образующегося уксусного альдегида.


Бензойная кислота простейшая одноосновная кислота ароматического ряда. Формула С 6 Н 5 -СООН .



На вид – бесцветные кристаллы.


– антисептик. Применяется для консервирования пищевых продуктови во многих органических синтезах.


– простейшая двухосновная карбоновая кислота.

Формула НООС-СООН.



– кристаллическое вещество, растворяется в воде, ядовита.


В виде кислой калиевой соли содержится во многих растениях.


Применяется для крашения тканей.


Терефталевая кислота НООС-С 6 Н 4 -СООН

Двухосновная карбоновая кислота ароматического ядра.

Её структурная формула:



Из терефталевой кислоты и этиленгликоля получают синтетическое волокно лавсан.


Может служить примером соединения со смешанными функциями – проявляет свойства кислоты и спирта (спиртокислота )



Она образуется при молочнокислом брожении сахаристых веществ, вызываемых особыми бактериями. Содержится в кислом молоке, рассоле квашеной капусты, силосе.


– аналог молочной кислоты в ароматическом ряду. Имеет строение:



Относится к соединениям со смешанными функциями – проявляет свойства кислоты и фенола (фенолокислота ).


– антисептик. Её используют (особенно её соли и эфиры) как лекарственное вещество.


Также салициловую кислоту используют при синтезе других продуктов.

Неспелые фрукты, щавель, барбарис, клюква, лимон… Что общего между ними? даже дошкольник, не задумываясь, ответит: они кислые. А вот обусловлен кислый вкус плодов и листьев многих растений различными карбоновыми кислотами - веществами, в состав которых входит одна или несколько карбоксильных групп -СООН.

У древних греков представление о кислом вкусе связывалось, прежде всего, с уксусом - раствором уксусной кислоты, образующейся при скисании вина. Само слово «уксус», или, как говорили жители Эллады, «оксис», означало «кислый». Получение уксуса при сухой перегонке - нагревании без доступа воздуха - древесины описано в сочинениях Иоганна Глаубера и Роберта Бойля. Однако природа этого вещества вплоть до XIX в. оставалась неизвестной. Алхимики считали, что при брожении вина винный спирт превращается в уксус, принимая на себя частицы - винного камня (гидротартрата калия С 4 H 5 О 6 K). Ещё в ХVIII в. брожение объясняли соединением кислых и горючих начал вина. Лишь в 1814 г. Якоб Берцелиус определил состав уксусной кислоты - С 2 Н 4 О 2 , а в 1845 г. немецкий химик Адольф Вильгельм Герман Кольбе (1818- 1884) осуществил полный её синтез из угля.

А. Г. Кольбе

Уксусная кислота относится к гомологическому ряду одноосновных карбоновых кислот. Низшие члены ряда при комнатной температуре представляют собой бесцветные жидкости с резким запахом. Простейшую из них - муравьиную кислоту НСООН, впервые получил в 1670 г. английский естествоиспытатель Джон Рей, нагревая муравьев в перегонной колбе. В природе широко распространены и более сложные по составу кислоты. Такова, например, масляная кислота СН 3 (СН 2) 2 СООН, которая образуется при прогоркании сливочного масла - это из-за нее испорченное масло так неприятно пахнет и горчит. Она обусловливает и запах пота. Родственная ей капроновая кислота СН 3 (СН 2) 4 СООН входит в состав козьего масла. В корнях растения валерианы содержится некоторое количество изовалериановой кислоты(СН 3) 2 СН – СН 2 СООН- ее можно выделить, обработав высушенные корни растения перегретым водяным паром.

Высшие кислоты, например стеариновая СН 3 (СН 2) 16 СООН и пальмитиновая CН 3 (CH 2) 14 COOH, впервые выделенная из пальмового масла, представляют собой бесцветные твёрдые вещества, не растворимые в воде. Долгое время основным их источником были природные жиры, например свиное сало или говяжий жир. Сейчас эти получают и синтетически - каталитическим окислением углеводородов нефти. Практическое значение имеют главным образом натриевые соли этих кислот - стеарат натрия C 17 H 35 COONa и пальмитат натрия C 15 H 31 COONa: они являются основными компонентами мыла.

В щавеле, а также в ревене, кислице, шпинате содержится щавелевая кислота НООС-СООН. Эта простейшая двухосновная кислота продукт распада некоторых аминокислот, например глицина. При нарушениях обмена веществ (в частности, при недостатке витамина В 12) в организме человека откладывается её малорастворимая кальциевая соль - оксалат кальция, это и есть так называемое оксалатное отложение солей. Янтарная кислота НООС-СН 2 СН 2 – СООН впервые была выделена алхимиками. Ещё Агрикола наблюдал при прокаливании янтаря образование похожего на соль белого налета янтарной кислоты (лат sal succini volatile - «летучая янтарная соль»).

Многие карбоновые кислоты — например, яблочная, винная, лимонная, хинная - образуются в вакуолях клеток плодов при частичном окислении глюкозы и в результате некоторых других биохимических процессов. Плоды цитрусовых богаты лимонной кислотой: в мякоти апельсина её около 2%, в грейпфруте - до 3%, а в лимоне - 6%. Поэтому неудивительно, что впервые она была выделена Шееле в 1784 г. именно из лимонов. Подобный эксперимент можно проделать и в школьной лаборатории: нужно лимонный сок обработать известью, а продукт этой реакции - кальциевую соль отфильтровать и разложить серной кислотой. Образующаяся в результате лимонная кислота переходит в раствор, который упаривают до начала кристаллизации. В зелёных яблоках, крыжовнике, плодах рябины содержатся не только яблочная, хинная, но и другие органические кислоты.

По основности кислоты делятся на:

Одноосновные (монокарбоновые), m = 1;

Двухосновные (дикарбоновые), m = 2;

Трехосновные (трикарбоновые), m = 3 и т. д.

Примерами дикарбоновых кислот являются:

В зависимости от строения углеводородного радикала R карбоновые кислоты делятся на:

Предельные (насыщенные), R = алкил;

Непредельные (ненасыщенные) - производные непредельных УВ;

Ароматические - производные ароматических УВ.

Насыщенные монокарбоновые кислоты

Наибольшее значение имеют насыщенные монокарбоновые кислоты, их общая формула:

Важнейшие представители гомологического ряда этих кислот представлены в таблице. В этой таблице приведены названия кислот RCOOH и кислотных остатков RCOO-.

В структуре карбоновых кислот часто выделяют также кислотные радикалы , или ацилы . Названия некоторых ацилов:

Номенклатура и изомерия

По международной заместительной номенклатуре название кислоты производят от названия соответствующего (с тем же числом атомов углерода) углеводорода с добавлением окончания -овая и слова кислота. Нумерацию цепи всегда начинают с атома углерода карбоксильной группы, поэтому в названиях положение группы -СООН не указывают. Например:

При составлении названий кислот, имеющих сложное строение, иногда также используют тривиальные названия кислот, соответствующие наиболее длинной прямой цепи. В этом случае атомы углерода в прямой цепи обозначают греческими буквами, начиная с атома , соседнего с карбоксильной группой: α (альфа),β (бета), γ (гамма), δ (дельта) и т. д., например:

Внутри класса предельных монокарбоновых кислот возможна только изомерия углеродной цепи. Первые три члена гомологического ряда (НСООН, СН 3 СООН, С 2 Н 5 СООН) изомеров не имеют. Четвертый член ряда существует в виде двух изомеров:

Пятый член ряда существует в виде четырех изомеров:

Монокарбоновые кислоты изомерны сложным эфирам карбоновых кислот:

Физические свойства

В твердом и жидком состояниях молекулы насыщенных монокарбоновых кислот димеризуются в результате образования между ними водородных связей:

Водородная связь в кислотах сильнее, чем в , поэтому температуры кипения кислот больше температур кипения соответствующих спиртов.

В водных растворах кислоты образуют линейные димеры:

Химические свойства

Для насыщенных монокарбоновых кислот характерна высокая реакционная способность. Это определяется главным образом реакциями карбоксильной группы (разрыв связей О-Н и С-О), а также реакциями замещения атомов «Н» у α-углеродного атома:

Реакции с разрывом связи О-Н (кислотные свойства, обусловленные подвижностью атома водорода карбоксильной группы)

Предельные монокарбоновые кислоты обладают всеми свойствами обычных кислот.

1.Диссоциация

В водных растворах монокарбоновые кислоты ведут себя как одноосновные кислоты: происходит их ионизация с образованием иона водорода и карбоксилат-иона:

Карбоксилат-ион построен симметрично, отрицательный заряд делокализован между атомами кислорода карбоксильной группы:

Делокализация стабилизирует карбоксилат-ион.

Карбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду насыщенных кислот является муравьиная кислота, в которой группа -СООН связана с атомом . Алкильные радикалы в молекулах следующих членов гомологического ряда обладают положительным индукционным эффектом (+1) и уменьшают положительный заряд на атоме углерода карбоксильной группы. Это в свою очередь ослабляет полярность связи О-Н и тем в большей степени, чем больше УВ радикал. Поэтому в гомологическом ряду кислот их сила уменьшается с ростом числа атомов углерода в молекуле:

2.Образование солей:

а) взаимодействие с активными :

2НСООН + Mg → (HCOO) 2 Mg + H 2

2CH 3 COOH + CaO → (CH 3 COO) 2 Ca + H 2 O

CH 3 COOH + NH 3 → CH 3 COONH 4

CH 3 COOH + NH 4 OH → CH 3 COONH 4 + H 2 O

д) взаимодействие с солями более слабых кислот (карбонатами и гидрокарбонатами):

2CH 3 COOH + Na 2 CO 3 → 2CH 3 COONa + CO 2 + H 2 O

CH 3 CH 2 CH 2 COOH + NaHCO 3 → CH 3 CH 2 CH 2 COONa + CO 2 + H 2 O

II . Реакции с разрывом связи С-О (замещение ОН-группы)

Скачать рефераты по другим темам можно



Понравилась статья? Поделиться с друзьями: