Какие виды кодировки информации применяются в компьютере. Информатика и информационные технологии

ТЕМА 4. ПРЕДСТАВЛЕНИЕ ДАННЫХ В КОМПЬЮТЕРЕ

4.1. Компьютерное кодирование чисел

Существуют два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.
Множество целых чисел , представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера области памяти, используемой для размещения чисел. В k-разрядной ячейке может храниться 2 k различных значений целых чисел.
Чтобы получить внутреннее представление целого положительного числа N, хранящегося в k-разрядном машинном слове, необходимо:
1) перевести число N в двоичную систему счисления;
2) полученный результат дополнить слева незначащими нулями до k разрядов.
Например, получим внутреннее представление целого числа 1607 в 2-х байтовой ячейке. Переведем число в двоичную систему: 1607 10 = 11001000111 2 . Внутреннее представление этого числа в ячейке будет следующим: 0000 0110 0100 0111.
Для записи внутреннего представления целого отрицательного числа (-N) необходимо:
1) получить внутреннее представление положительного числа N;
2) обратный код этого числа заменой 0 на 1 и 1 на 0;
3) полученному числу прибавить 1.
Например, получим внутреннее представление целого отрицательного числа -1607. Воспользуемся результатом предыдущего примера и запишем внутреннее представление положительного числа 1607: 0000 0110 0100 0111. Инвертированием получим обратный код: 1111 1001 1011 1000. Добавим единицу: 1111 1001 1011 1001 - это и есть внутреннее двоичное представление числа -1607.
Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p , которую называют порядком: R = m * n p .
Представление числа в форме с плавающей точкой неоднозначно. Например, справедливы следующие равенства: 12.345 = 0.0012345x10 4 = 1234.5x10 -2 = 0.12345x10 2 .
Чаще всего в ЭВМ используют нормализованное представление числа в форме с плавающей точкой. Мантисса в таком представлении должна удовлетворять условию: 0.1 p В памяти компьютера мантисса представляется как целое число, содержащее только значащие цифры (0 целых и запятая не хранятся), так для числа 12.345 в ячейке памяти, отведенной для хранения мантиссы, будет сохранено число 12345. Для однозначного восстановления исходного числа остается сохранить только его порядок, в данном примере - это 2.
Двоичная система счисления (двоичный код) - код, в котором для представления информации используются цепочки бит. Для представления целых чисел используются:
- прямой код - знак кодируется нулем для положительных и единицей для отрицательных. 510= 0 000101; -510= 1 000101
- обратный код (или дополнительный - дополненный до единицы) для положительных чисел совпадает с прямым кодом, а для отрицательных получается из соответствующего прямого путем поразрядного обращения каждого бита кроме знакового: -5=1 111010
Данный код позволяет унифицировать сложение и вычитание с оговоркой, что если при суммировании чисел в обратном коде длина результата превысит стандартную длину цепочки, то происходит циклический перенос старшего разряда в младший, например: (+5) +(-3)=0000101+1111100=1 "0000001"= "0000010"=210.
Для умножения и деления обратный код менее удобен, чем прямой. В основном обратный код нужен для получения дополнительного.
Дополнительный код (или дополнение до двух) для положительных чисел совпадает с прямым, а для отрицательных чисел получается из обратного кода сложением с 1. Например: -5=1 111011.
Преимущества дополнительного кода перед обратным кодом является упрощение суммирования, т.к. не возникает необходимости в циклическом переносе из старшего разряда в младший.

4.2. Компьютерное кодирование текста

Множество символов, используемых при записи текста, называется алфавитом . Количество символов в алфавите называется его мощностью .
Для представления текстовой информации в компьютере чаще всего используется алфавит мощностью 256 символов. Один символ из такого алфавита несет 8 бит информации, т. к. 2 8 = 256. Но 8 бит составляют один байт, следовательно, двоичный код каждого символа занимает 1 байт памяти ЭВМ.
Все символы такого алфавита пронумерованы от 0 до 255, а каждому номеру соответствует 8-разрядный двоичный код от 00000000 до 11111111. Этот код является порядковым номером символа в двоичной системе счисления.
Для разных типов ЭВМ и операционных систем используются различные таблицы кодировки, отличающиеся порядком размещения символов алфавита в кодовой таблице. Международным стандартом на персональных компьютерах является уже упоминавшаяся таблица кодировки ASCII.
Принцип последовательного кодирования алфавита заключается в том, что в кодовой таблице ASCII латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений.
Стандартными в этой таблице являются только первые 128 символов, т. е. символы с номерами от нуля (двоичный код 00000000) до 127 (01111111). Сюда входят буквы латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы. Остальные 128 кодов, начиная со 128 (двоичный код 10000000) и кончая 255 (11111111), используются для кодировки букв национальных алфавитов, символов псевдографики и научных символов.
Сейчас существует несколько различных кодовых таблиц для русских букв (КОИ-8, СР-1251, СР-866, Mac, ISO), причем тексты, созданные в одной кодировке, могут неправильно отображаться в другой. Решается такая проблема с помощью специальных программ перевода текста из одной кодировки в другую.
Альтернативная кодировка не подошла для ОС Windows. Пришлось передвинуть русские буквы в таблице на место псевдографики, и получили кодировку Windows 1251 (Win-1251).
В течение долгого времени понятия "байт" и "символ" были почти синонимами. Однако, в конце концов, стало ясно, что 256 различных символов - это не так много. Математикам требуется использовать в формулах специальные математические знаки, переводчикам необходимо создавать тексты, где могут встретиться символы из различных алфавитов, экономистам необходимы символы валют ($, £, ¥). Для решения этой проблемы была разработана универсальная система кодирования текстовой информации - Unicode. В этой кодировке для каждого символа отводится не один, а два байта, т.е. шестнадцать бит. Таким образом, доступно 65536 (2 16) различных кодов. Этого хватит на латинский алфавит, кириллицу, иврит, африканские и азиатские языки, различные специализированные символы: математические, экономические, технические и многое другое. Главный недостаток Unicode состоит в том, что все тексты в этой кодировке становятся в два раза длиннее. В настоящее время стандарты ASCII и Unicode мирно сосуществуют.

4.3. Компьютерное кодирование графики

Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие части - растровую и векторную графику. Для представления графической информации растровым способом используется так называемый точечный подход. На первом этапе вертикальными и горизонтальными линиями делят изображение. Чем больше при этом получилось элементов (пикселей), тем точнее будет передана информация об изображении. Как известно из физики, любой цвет может быть представлен в виде суммы различной яркости красного, зеленого и синего цветов. Поэтому надо закодировать информацию о яркости каждого из трех цветов для отображения каждого пикселя. В видеопамяти находится двоичная информация об изображении, выводимом на экран. Таким образом, растровые изображения представляют собой однослойную сетку точек, называемых пикселями (pixel, от англ. picture element), а код пикселя содержит информацию о его цвете.
Для черно-белого изображения (без полутонов) пиксель может принимать только два значения: белый и черный (светится - не светится), а для его кодирования достаточно одного бита памяти: 1 - белый, 0 - черный.
Пиксель на цветном дисплее может иметь различную окраску, поэтому одного бита на пиксель недостаточно. Для кодирования 4-цветного изображения требуются два бита на пиксель, поскольку два бита могут принимать 4 различных состояния. Может использоваться, например, такой вариант кодировки цветов: 00 - черный, 10 - зеленый, 01 - красный, 11 - коричневый.
На RGB-мониторах все разнообразие цветов получается сочетанием базовых цветов: красного (Red), зеленого (Green), синего (Blue), из которых можно получить 8 основных комбинаций:


Разумеется, если иметь возможность управлять интенсивностью (яркостью) свечения базовых цветов, то количество различных вариантов их сочетаний, порождающих разнообразные оттенки, увеличивается. Количество различных цветов - К и количество битов для их кодировки - N связаны между собой простой формулой: 2 N = К.
В противоположность растровой графике векторное изображение состоит из геометрических примитивов: линия, прямоугольник, окружность и т.д. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.). Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.
Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

4.4. Компьютерное кодирование звука

Из курса физики известно, что звук - это колебание частиц воздуха, непрерывный сигнал с меняющейся амплитудой.
При кодировании звука этот сигнал надо представить в виде последовательности нулей и единиц. Как, например, это происходит в микрофоне? Через равные промежутки времени, очень часто (десятки тысяч раз в секунду) измеряется амплитуда колебаний. Каждое измерение производится с ограниченной точностью и записывается в двоичном виде. Частота, с которой записывается амплитуда, называется частотой дискретизации. Полученный ступенчатый сигнал сначала сглаживается посредством аналогового фильтра, а затем преобразуется в звук с помощью усилителя и динамика.

На качество воспроизведения закодированного звука в основном влияют два параметра: частота дискретизации - количество измерений амплитуды за секунду в герцах и глубина кодирования звука - размер в битах, отводимый под запись значения амплитуды. Например, при записи на компакт-диски (CD) используются 16-разрядные значения, а частота дискретизации равна 44032 Гц. Эти параметры обеспечивают превосходное качество звучания речи и музыки. Для стереозвука отдельно записывают данные для левого и для правого канала.
Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение. Для компьютерной обработки такой аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел.
Поступим следующим образом. Будем измерять напряжение через равные промежутки времени и записывать полученные значения в память компьютера. Этот процесс называется дискретизацией (или оцифровкой), а устройство, выполняющее его - аналого-цифровым преобразователем (АЦП).



Для того чтобы воспроизвести закодированный таким образом звук, нужно выполнить обратное преобразование (для него служит цифро-аналоговый преобразователь - ЦАП), а затем сгладить получившийся ступенчатый сигнал.
Чем выше частота дискретизации (т. е. количество отсчетов за секунду) и чем больше разрядов отводится для каждого отсчета, тем точнее будет представлен звук. Но при этом увеличивается и размер звукового файла. Поэтому в зависимости от характера звука, требований, предъявляемых к его качеству и объему занимаемой памяти, выбирают некоторые компромиссные значения.
Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.
Человек издавна использует довольно компактный способ представления музыки - нотную запись. В ней специальными символами указывается, какой высоты звук, на каком инструменте и как сыграть. Фактически, ее можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI.
Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и неоспоримые преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.
Заметим, что существуют и другие, чисто компьютерные, форматы записи музыки. Среди них следует отметить формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку. При этом вместо 18-20 музыкальных композиций на стандартный компакт-диск (CD-ROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Вопросы для самоконтроля

1. Как называется совокупность всех символов, используемых для представления информации на некотором языке?
2. Что такое кодирование информации и почему в нем существует необходимость?
3. Что такое алфавит системы счисления?
4. Что общего у двоичной и десятичной систем счисления и чем они отличаются?
5. Для чего используются родственные системы счисления?
6. Что такое двоичная кодировка и почему она применяется в компьютерах?
7. Как представить двоичное число в восьмеричной системе?
8. В чем достоинства и недостатки кодировки Unicode?
9. Что общего в кодировании текста, графики и звука в компьютерной системе?
10. Что называют растром? Чем отличается пиксель от точки экрана?

Внутреннее представление в компьютере информации любого вида является двоичным.

· Бит - минимальная единица количества информации, равна одному двоичному разряду.

Смысловое значение бита можно представить как:

Выбор ответа «да» или «нет» на поставленный вопрос;

- «есть сигнал/нет сигнала»;

Истина / ложь.

Одним битом можно закодировать два объекта.

Бит как единица информации слишком мала, поэтому постоянно используется другая более распространенная единица количества информации, производная от бита – байт.

· Байт – минимальная единица чтения/записи памяти компьютера, равная 8 битам:

1 Байт = 8 бит.

При этом биты нумеруются справа налево, начиная с 0-го разряда.

Одним байтом можно закодировать 256 объектов (2 8 = 256 ), при этом каждому из 256 объектов будет соответствовать одно из 256 8-значных двоичных чисел.

1 килобайт = 1 Кб = 1 К = 1024 байта.

1 мегабайт = 1 Мб = 1 М = 1024 Кб.

1 гигабайт = 1 Гб = 1 Г = 1024 Мб.

1 терабайт = 1 Тб = 1 Т = 1024 Гб.

Представление различных видов информации в компьютере

Виды информации, обрабатываемые в компьютере:

Числовая;

Текстовая,

Графическая,

Звуковая.

Несмотря на исходную форму, вся информация в компьютере представляется в числовой форме.

    Кодирование числовой информации в ПК

Существует несколько вариантов представления чисел в ПК. Числа могут быть целые и дробные, положительные и отрицательные.

Целые положительные числа от 0 до 255 можно представить непосредственно в двоичной системе счисления, при этом они будут занимать один байт в памяти компьютера.

Двоичный код

Целые отрицательные числа представлены особым образом: знак отрицательного числа кодируется обычно старшим битом, нуль интерпретируется как плюс, единица как минус. Поскольку один бит будет занят, то одним байтом могут быть закодированы целые числа в интервале от -127 до +127. Такой способ представления целых чисел называется прямым кодом .

Также существует способ кодирования отрицательных целых чисел в обратном коде . В этом случае положительные числа совпадают с положительными числами в прямом коде, а отрицательные получаются в результате вычитания из двоичного числа 1 0000 0000 соответствующего положительного числа, например, число -7 получит код 1111 1000. Целые числа больших диапазонов представляются в двухбайтовых и четырехбайтовых адресах памяти.

В вычислительных машинах применяются две формы представления дробных двоичных чисел :

    в естественной форме или форме с фиксированной запятой (точкой);

    в нормальной форме или форме с плавающей запятой (точкой).

С фиксированной запятой все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной.

Пример . Пусть число представлено в виде m:n, где m - фиксированное число разрядов в целой части числа (до запятой), n - фиксированное число разрядов в дробной части числа (после запятой).

Например, m = 3, n = 6, тогда числа, записанные в такую разрядную сетку, имеют вид:

213, 560000; + 004, 021025; - 000, 007345.

Однако такое представление используется в основном для целых чисел, поскольку при выходе результата какой-либо операции за границы такой разрядной сетки дальнейшие вычисления теряют смысл.

С плавающей запятой все числа изображаются в виде двух групп цифр. Первая группа цифр называется мантиссой, вторая - порядком. Причем абсолютная величина мантиссы должна быть меньше 1, а порядок - целым числом.

В общем виде число в форме с плавающей запятой может быть представлено в виде:

N = MP r

где M - мантисса числа (M < 1);

r - порядок числа (r - целое число);

P - основание системы счисления.

Пример . Числа из предыдущего примера имеют вид:

0, 21356 10 3 ; + 0, 402102510 1 ; - 0, 73450010 -2 .

Нормальная форма представления имеет огромный диапазон отображения чисел и является основой в современных ПК.

Кроме двоичной системы счисления также широкое распространение получила двоично-десятичная система счисления. В этой системе все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде последовательно записываются друг за другом.

Полем называют последовательность нескольких бит или байтов.

В ПК могут обрабатываться поля постоянной и переменной длины.

Поля постоянной длины :

слово - 2 байта;

двойное слово - 4 байта;

расширенное слово - 8 байт;

слово длиной 10 байт.

Поля переменной длины могут иметь любой размер от 0 до 256 байт, но обязательно кратный целому числу байтов.

1) Двойное слово - 4 байта = 32 бита

3) Слово длиной 10 байт - 80 бит

Порядок

мантисса

При этом S- поле знака:

если S = 0, число  0

если S = 1, число < 0.

Для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления. Для этого используется кодирование, то есть выражение данных одного типа через данные другого типа. Своя система кодирования существует и в вычислительной технике – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по-английски – Binary Digit или сокращенно Bit (бит). Одним битом могут быть выражены два понятия: 0 или 1. Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:

00 01 10 11

Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе, то есть общая формула имеет вид: N =2 , где N - количество независимых кодируемых значений; т - разрядность двоичного кодирования, принятая в данной системе.

Кодирование целых и вещественных чисел

Целые числа кодировать двоичным кодом просто – достаточно взять целое число и делить его пополам до тех пор, пока в остатке не образуется ноль или единица. Совокупность остатков от каждого деления, записанная справа налево вместе с последним остатком, и образует двоичный аналог десятичного числа:

19:2 = 9 + 1, 9:2 = 4+1, 4:2=2+0, 2:2 = 1 .

Таким образом, 19 10 = 1011 2 . Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит). Шестнадцать бит позволяют закодировать целые числа от 0 до 65 535, а 24 разряда (бита) – уже более 16,5 миллионов разных значений. Для кодирования вещественных чисел используют 80-разрядное кодирование. При этом число предварительно преобразуется в нормализованную форму:

3,1415926 = 0,31415926 10 1 ;

300 000 = 0,3-10 е;

123 456 789 = 0,123456789 10 10 .

Первая часть числа называется мантиссой, а вторая – характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики (тоже со знаком).

Представление числовых данных в компьютере

Запись чисел с фиксированной точкой. При представлении в памяти компьютера чисел в естественной форме устанавливается фиксированная длина разрядной сетки. Точку (запятую) можно зафиксировать в начале, середине или конце разрядной сетки. При этом распределение разрядов между целой и дробной частями остается неизменным для любых чисел. В связи с этим существует другое название естественной формы представления чисел - с фиксированной точкой (запятой). В современных компьютерах эта форма используется для представления целых чисел. Обычно целые числа занимают в памяти компьютеров один, два или четыре байта. Один, как правило, старший бит отводится под знак числа. Знак положительного числа "+" кодируется нулем, а знак отрицательного числа "–" - единицей. Целые числа без знака в двухбайтовом формате могут принимать значения от 0 до 2 16 –1 (до 65535), а со знаком – от –2 15 до +2 15 –1, т.е. от –32768 до 32767. Запись чисел с плавающей точкой. Обработка очень больших и очень маленьких чисел производится в экспоненциальной форме. В этом случае положение запятой в записи числа может изменяться. Поэтому представление в памяти чисел в экспоненциальной форме называется представлением с плавающей точкой (запятой). Любое число А в экспоненциальной форме представляется в виде формулы:

А = m А q p ,

где m A – мантисса числа;

q – основание системы счисления;

P – порядок числа.

Для однозначности представления чисел c плавающей точкой используется нормализованная форма, при которой мантисса отвечает условию:

q -1 ≤ |m А | < 1.

Это означает, что мантисса должна быть правильной дробью и иметь после запятой цифру, отличную от нуля.

Кодирование текстовых данных

В традиционных кодировках для кодирования одного символа используется 8 бит. Легко подсчитать, что такой 8-разрядный код позволяет закодировать 256 различных символов. В качестве международного стандарта принята кодовая таблица ASCII (American Standard Code for Information Interchange), кодирующая первую половину символов с числовыми кодами от 0 до 127(рис. 1). Национальные стандарты кодировочных таблиц включают первую, международную часть кодовой таблицы без изменений, а во второй половине содержат коды национальных алфавитов, символы псевдографики и некоторые математические знаки. В настоящее время существуют пять различных кодировок кириллицы: КОИ-8-Р (рис. 2), Windows, MS-DOS, Macintosh и ISO, что вызывает трудности при работе с русскоязычными документами.

Рис. 1. Международная кодировка ASCII

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ–8(Код обмена информацией, 8-битный). Эта кодировка применялась еще в 70-е гг.XX в. на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX. Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251(CP означает Code Page – кодовая страница) (рис. 3).

Рис. 2. Кодировка КОИ 8-Р

Рис. 3. Кодировка CP1251

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866. Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировкуMac. Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названиемISO 8859-5.

Департамент образования города Москвы


Государственное образовательное учреждение

Среднего профессионального образования

Колледж архитектуры и строительства № 7 ТСП-2

Доклад

По предмету: «Информатика и ИКТ»

на тему: «Системы счисления».

Выполнил: ученик группы 11ЭВМ

Ф.И.О.: Вус Иван Валерьевич

проверил:

Преподаватель Овсянникова А.С.

Москва – 2011

Представление данных в памяти персонального компьютера (числа, символы, графика, звук).

Форма и язык представления информации

Воспринимая информацию с помощью органов чувств, человек стремится зафиксировать ее так, чтобы она стала понятной и другим, представляя ее в той или иной форме.

Музыкальную тему композитор может наиграть на пианино, а затем записать с помощью нот. Образы, навеянные все той же мелодией, поэт может воплотить в виде стихотворения, хореограф выразить танцем, а художник - в картине.

Человек выражает свои мысли в виде предложений, составленных из слов. Слова, в свою очередь, состоят из букв. Это - алфавитное представление информации.

Форма представления одной и той же информации может быть различной. Это зависит от цели, которую вы перед собой поставили. С подобными операциями вы сталкиваетесь на уроках математики и физики, когда представляете решение в разной форме. Например, решение задачи: «Найти значение математического выражения..." можно представить в табличной или графической форме. Для этого вы пользуетесь визуальными средствами представления информации: числами, таблицей, рисунком.

Таким образом, информацию можно представить в различной форме:

  • знаковой письменной, состоящей из различных знаков, среди которых принято выделять
    • символьную в виде текста, чисел, специальных символов (например, текст учебника);
    • графическую (например, географическая карта);
    • табличную (например, таблица записи хода физического эксперимента);
  • в виде жестов или сигналов (например, сигналы регулировщика дорожного движения);
  • устной словесной (например, разговор).

Форма представления информации очень важна при ее передаче: если человек плохо слышит, то передавать ему информацию в звуковой форме нельзя; если у собаки слабо развито обоняние, то она не может работать в розыскной службе. В разные времена люди передавали информацию в различной форме с помощью: речи, дыма, барабанного боя, звона колоколов, письма, телеграфа, радио, телефона, факса.

Независимо от формы представления и способа передачи информации, она всегда передается с помощью какого-либо языка.

На уроках математики вы используете специальный язык, в основе которого - цифры, знаки арифметических действий и отношений. Они составляют алфавит языка математики.

На уроках физики при рассмотрении какого-либо физического явления вы используете характерные для данного языка специальные символы, из которых составляете формулы. Формула - это слово на языке физики.

На уроках химии вы также используете определенные символы, знаки, объединяя их в «слова» данного языка.

Существует язык глухонемых, где символы языка - определенные знаки, выражаемые мимикой лица и движениями рук.

Основу любого языка составляет алфавит - набор однозначно определенных знаков (символов), из которых формируется сообщение.

Языки делятся на естественные (разговорные) и формальные. Алфавит естественных языков зависит от национальных традиций. Формальные языки встречаются в специальных областях человеческой деятельности (математике, физике, химии и т. д.). В мире насчитывается около 10000 разных языков, диалектов, наречий. Многие разговорные языки произошли от одного и того же языка. Например, от латинского языка образовались французский, испанский, итальянский и другие языки.

Кодирование информации

С появлением языка, а затем и знаковых систем расширились возможности общения между людьми. Это позволило хранить идеи, полученные знания и любые данные, передавать их различными способами на расстояние и в другие времена - не только своим современникам, но и будущим поколениям. До наших дней дошли творения предков, которые с помощью различных символов увековечили себя и свои деяния в памятниках и надписях. Наскальные рисунки (петроглифы) до сих пор служат загадкой для ученых. Возможно, таким способом древние люди хотели вступить в контакт с нами, будущими жителями планеты и сообщить о событиях их жизни.

Каждый народ имеет свой язык, состоящий из набора символов (букв): русский, английский, японский и многие другие. Вы уже познакомились с языком математики, физики, химии.

Представление информации с помощью какого-либо языка часто называют кодированием.

Код - набор символов (условных обозначений) дли представления информации. Кодирование - процесс представления информации в виде кода.

Водитель передает сигнал с помощью гудка или миганием фар. Кодом является наличие или отсутствие гудка, а в случае световой сигнализации - мигание фар или его отсутствие.

Вы встречаетесь с кодированием информации при переходе дороги по сигналам светофора. Код определяют цвета светофора - красный, желтый, зеленый.

В основу естественного языка, на котором общаются люди, тоже положен код. Только в этом случае он называется алфавитом. При разговоре этот код передается звуками, при письме - буквами. Одну и ту же информацию можно представить с помощью различных кодов. Например, запись разговора можно зафиксировать посредством русских букв или специальных стенографических значков.

По мере развития техники появлялись разные способы кодирования информации. Во второй половине XIX века американский изобретатель Сэмюэль Морзе изобрел удивительный код, который служит человечеству до сих пор. Информация кодируется тремя «буквами»: длинный сигнал (тире), короткий сигнал (точка) и отсутствие сигнала (пауза) для разделения букв. Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.

Люди всегда искали способы быстрого обмена сообщениями. Для этого посылали гонцов, использовали почтовых голубей. У народов существовали различные способы оповещения о надвигающейся опасности: барабанный бой, дым костров, флаги и т. д. Однако использование такого представления информации требует предварительной договоренности о понимании принимаемого сообщения.

Знаменитый немецкий ученый Готфрид Вильгельм Лейбниц предложил еще в XVII веке уникальную и простую систему представления чисел. «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... при сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

Сегодня такой способ представления информации с помощью языка, содержащего всего два символа алфавита - 0 и 1, широко используется в технических устройствах, в том числе и в компьютере. Эти два символа 0 и 1 принято называть двоичными цифрами или битами (от англ. bit - Binary Digit - двоичный знак).

Инженеров такой способ кодирования привлек простотой технической реализации - есть сигнал или нет сигнала. С помощью этих двух цифр можно закодировать любое сообщение.

Более крупной единицей измерения объема информации принято считать 1 байт, который состоит из 8 бит.

Принято также использовать и более крупные единицы измерения объема информации. Число 1024 (2 10) является множителем при переходе к более высокой единице измерения.

Кодирование информации в компьютере

Вся информация, которую обрабатывает компьютер, должна быть представлена двоичным кодом с помощью двух цифр - 0 и 1. Эти два символа принято называть двоичными цифрами, или битами. С помощью двух цифр 1 и 0 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организовано два важных процесса:

  • кодирование, которое обеспечивается устройствами ввода при преобразовании входной информации в форму, воспринимаемую компьютером, то есть в двоичный код;
  • декодирование, которое обеспечивается устройствами вывода при преобразовании данных из двоичного кода в форму, понятную человеку.

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного
более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

  • 0 - отсутствие электрического сигнала или сигнал имеет низкий уровень;
  • 1 - наличие сигнала или сигнал имеет высокий уровень.

Эти состояния легко различать. Недостаток двоичного кодирования - длинные коды. Но в технике легче иметь дело с большим числом простых элементов, чем с небольшим количеством сложных.

Вам и в быту ежедневно приходится сталкиваться с устройством, которое может находиться только в двух устойчивых состояниях: включено/выключено. Конечно же, это хорошо знакомый всем выключатель. А вот придумать выключатель, который мог бы устойчиво и быстро переключаться в любое из 10 состояний, оказалось невозможным. В результате после ряда неудачных попыток разработчики пришли к выводу о невозможности построения компьютера на основе десятичной системы счисления. И в основу представления чисел в компьютере была положена именно двоичная система счисления.

В настоящее время существуют разные способы двоичного кодирования и декодирования информации в компьютере. В первую очередь это зависит от вида информации, а именно, что должно кодироваться: текст, числа, графические изображения или звук. Кроме того, при кодировании чисел важную роль играет то, как они будут использоваться: в тексте, в расчетах или в процессе ввода-вывода. Накладываются также и особенности технической реализации.

Кодирование чисел

Система счисления - совокупность приемов и правил записи чисел с помощью определенного набора символов.

Для записи чисел могут использоваться не только цифры, но и буквы (например, запись римских цифр - XXI). Одно и то же число может быть по-разному представлено в различных системах счисления.

В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные.

В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Например, меняя позицию цифры 2 в десятичной системе счисления, можно записать разные по величине десятичные числа, например 2; 20; 2000; 0,02 и т. д.

В непозиционной системе счисления цифры не изменяют своего количественного значения при изменении их расположения (позиции) в числе. Примером непозиционной системы может служить римская система, в которой независимо от местоположения одинаковый символ имеет неизменное значение (например, символ X в числе XXV).

Количество различных символов, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления.

В компьютере наиболее подходящей и надежной оказалась двоичная система счисления, в которой для представления чисел используются последовательности цифр 0 и 1.

Кроме того, для работы с памятью компьютера оказалось удобным использовать представление информации с помощью еще двух систем счисления:

  • восьмеричной (любое число представляется с помощью восьми цифр - 0, 1, 2... 7);
  • шестнадцатеричной (используемые символы-цифры - 0, 1, 2... 9 и буквы - А, В, С, D, Е, F, заменяющие числа 10, 11, 12, 13, 14, 15 соответственно).

Кодирование символьной информации

Нажатие алфавитно-цифровой клавиши на клавиатуре приводит к тому, что в компьютер посылается сигнал в виде двоичного числа, представляющего собой одно из значений кодовой таблицы. Кодовая таблица - это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standart Code for Informational Interchange - американский стандартный код информационного обмена).

Для хранения двоичного кода одного символа выделен 1 байт = 8 бит. Учитывая, что каждый бит принимает значение 1 или 0, количество возможных сочетаний единиц и нулей равно 2 8 = 256.

Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов. Эти коды и составляют таблицу ASCII.

Пример, при нажатии клавиши с буквой S в память компьютера записывается код 01010011. При выводе буквы S на экран компьютер выполняет декодирование - на основании этого двоичного кода строится изображение символа.

SUN (СОЛНЦЕ) - 01010011 010101101 01001110

Стандарт ASCII кодирует первые 128 символов от 0 до 127: цифры, буквы латинского алфавита, управляющие символы. Первые 32 символа являются управляющими и предназначены в основном для передачи команд управления. Их назначение может варьироваться в зависимости от программных и аппаратных средств. Вторая половина кодовой таблицы (от 128 до 255) американским стандартом не определена и предназначена для символов национальных алфавитов, псевдографических и некоторых математических символов. В разных странах могут использоваться различные варианты второй половины кодовой таблицы.

Обратите внимание! Цифры кодируются по стандарту ASCII записываются в двух случаях - при вводе-выводе и когда они встречаются я тексте. Если цифры участвуют в вычислениях, то осуществляется их преобразование в другой двоичный код.

Для сравнения рассмотрим число 45 для двух вариантов кодирования.

При использовании в тексте это число потребует для своего представления 2 байта, поскольку каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII . В двоичной системе - 00110100 00110101.

При использовании в вычислениях код этого числа будет получен по специальным правилам перевода и представлен в виде 8-разрядного двоичного числа 00101101, на что потребуется 1 байт.



Понравилась статья? Поделиться с друзьями: